Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(isNePal(__(I, __(P, I)))) → ISPAL(P)
ISPAL(ok(X)) → ISPAL(X)
PROPER(isQid(X)) → ISQID(proper(X))
ACTIVE(isNeList(__(V1, V2))) → AND(isList(V1), isNeList(V2))
ACTIVE(isNeList(__(V1, V2))) → AND(isNeList(V1), isList(V2))
PROPER(isNePal(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V1)
PROPER(__(X1, X2)) → PROPER(X1)
ISNEPAL(ok(X)) → ISNEPAL(X)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ISNELIST(ok(X)) → ISNELIST(X)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
PROPER(and(X1, X2)) → PROPER(X2)
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
PROPER(isList(X)) → PROPER(X)
__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
ACTIVE(isNeList(V)) → ISQID(V)
PROPER(isPal(X)) → PROPER(X)
TOP(mark(X)) → PROPER(X)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(isPal(X)) → ISPAL(proper(X))
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
ACTIVE(isList(__(V1, V2))) → AND(isList(V1), isList(V2))
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(isList(__(V1, V2))) → ISLIST(V2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V2)
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(isList(__(V1, V2))) → ISLIST(V1)
TOP(ok(X)) → TOP(active(X))
ACTIVE(isList(V)) → ISNELIST(V)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
PROPER(isNeList(X)) → PROPER(X)
ISLIST(ok(X)) → ISLIST(X)
PROPER(and(X1, X2)) → PROPER(X1)
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ISQID(ok(X)) → ISQID(X)
__1(X1, mark(X2)) → __1(X1, X2)
ACTIVE(isNePal(V)) → ISQID(V)
ACTIVE(isPal(V)) → ISNEPAL(V)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
PROPER(isNeList(X)) → ISNELIST(proper(X))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isQid(I), isPal(P))
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V1)
PROPER(isList(X)) → ISLIST(proper(X))
ACTIVE(__(X1, X2)) → __1(X1, active(X2))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(isNePal(__(I, __(P, I)))) → ISPAL(P)
ISPAL(ok(X)) → ISPAL(X)
PROPER(isQid(X)) → ISQID(proper(X))
ACTIVE(isNeList(__(V1, V2))) → AND(isList(V1), isNeList(V2))
ACTIVE(isNeList(__(V1, V2))) → AND(isNeList(V1), isList(V2))
PROPER(isNePal(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V1)
PROPER(__(X1, X2)) → PROPER(X1)
ISNEPAL(ok(X)) → ISNEPAL(X)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ISNELIST(ok(X)) → ISNELIST(X)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
PROPER(and(X1, X2)) → PROPER(X2)
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
PROPER(isList(X)) → PROPER(X)
__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
ACTIVE(isNeList(V)) → ISQID(V)
PROPER(isPal(X)) → PROPER(X)
TOP(mark(X)) → PROPER(X)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(isPal(X)) → ISPAL(proper(X))
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
ACTIVE(isList(__(V1, V2))) → AND(isList(V1), isList(V2))
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(isList(__(V1, V2))) → ISLIST(V2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V2)
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(isList(__(V1, V2))) → ISLIST(V1)
TOP(ok(X)) → TOP(active(X))
ACTIVE(isList(V)) → ISNELIST(V)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
PROPER(isNeList(X)) → PROPER(X)
ISLIST(ok(X)) → ISLIST(X)
PROPER(and(X1, X2)) → PROPER(X1)
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ISQID(ok(X)) → ISQID(X)
__1(X1, mark(X2)) → __1(X1, X2)
ACTIVE(isNePal(V)) → ISQID(V)
ACTIVE(isPal(V)) → ISNEPAL(V)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
PROPER(isNeList(X)) → ISNELIST(proper(X))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isQid(I), isPal(P))
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V1)
PROPER(isList(X)) → ISLIST(proper(X))
ACTIVE(__(X1, X2)) → __1(X1, active(X2))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 10 SCCs with 30 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISPAL(ok(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISPAL(ok(X)) → ISPAL(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ISPAL(x1)) = (1/4)x_1   
POL(ok(x1)) = 1/4 + (2)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(ok(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(ok(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ok(x1)) = 1/4 + (2)x_1   
POL(ISNEPAL(x1)) = (1/4)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISQID(ok(X)) → ISQID(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISQID(ok(X)) → ISQID(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ISQID(x1)) = (1/4)x_1   
POL(ok(x1)) = 1/4 + (2)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(ok(X)) → ISNELIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNELIST(ok(X)) → ISNELIST(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ISNELIST(x1)) = (1/4)x_1   
POL(ok(x1)) = 1/4 + (2)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISLIST(ok(X)) → ISLIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISLIST(ok(X)) → ISLIST(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ok(x1)) = 4 + (4)x_1   
POL(ISLIST(x1)) = (2)x_1   
The value of delta used in the strict ordering is 8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.

AND(mark(X1), X2) → AND(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(AND(x1, x2)) = (1/4)x_2   
POL(mark(x1)) = 0   
POL(ok(x1)) = 1/4 + (4)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(AND(x1, x2)) = (1/4)x_1   
POL(mark(x1)) = 1/4 + (2)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.

__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(__1(x1, x2)) = (1/4)x_1   
POL(ok(x1)) = (4)x_1   
POL(mark(x1)) = 2 + (2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(ok(X1), ok(X2)) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


__1(ok(X1), ok(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.

__1(X1, mark(X2)) → __1(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(__1(x1, x2)) = (1/2)x_1   
POL(ok(x1)) = 1/4 + (4)x_1   
POL(mark(x1)) = 0   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


__1(X1, mark(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(__1(x1, x2)) = (1/4)x_2   
POL(mark(x1)) = 1/4 + (2)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isPal(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(isList(X)) → PROPER(X)
PROPER(__(X1, X2)) → PROPER(X1)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isPal(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
The remaining pairs can at least be oriented weakly.

PROPER(isList(X)) → PROPER(X)
Used ordering: Polynomial interpretation [25,35]:

POL(PROPER(x1)) = (2)x_1   
POL(isPal(x1)) = 2 + (4)x_1   
POL(__(x1, x2)) = 4 + (4)x_1 + (2)x_2   
POL(isList(x1)) = x_1   
POL(isNeList(x1)) = 1 + (2)x_1   
POL(isNePal(x1)) = 4 + x_1   
POL(and(x1, x2)) = 1/2 + x_1 + (4)x_2   
POL(isQid(x1)) = 4 + (2)x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(isList(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PROPER(isList(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(PROPER(x1)) = (2)x_1   
POL(isList(x1)) = 4 + (4)x_1   
The value of delta used in the strict ordering is 8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
Used ordering: Polynomial interpretation [25,35]:

POL(__(x1, x2)) = (2)x_1 + (4)x_2   
POL(and(x1, x2)) = 4 + x_1 + (4)x_2   
POL(ACTIVE(x1)) = (2)x_1   
The value of delta used in the strict ordering is 8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(__(x1, x2)) = 1/4 + (2)x_1 + (2)x_2   
POL(ACTIVE(x1)) = (1/4)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.

TOP(ok(X)) → TOP(active(X))
Used ordering: Polynomial interpretation [25,35]:

POL(i) = 4   
POL(a) = 2   
POL(isList(x1)) = 1/2 + (1/4)x_1   
POL(__(x1, x2)) = 4 + (4)x_1 + x_2   
POL(e) = 4   
POL(mark(x1)) = 1/4 + x_1   
POL(ok(x1)) = x_1   
POL(isNePal(x1)) = 1/2 + (1/4)x_1   
POL(and(x1, x2)) = x_1 + x_2   
POL(o) = 4   
POL(isQid(x1)) = (1/4)x_1   
POL(active(x1)) = x_1   
POL(isPal(x1)) = 1 + x_1   
POL(tt) = 1/4   
POL(u) = 4   
POL(isNeList(x1)) = 1/4 + (1/4)x_1   
POL(TOP(x1)) = (1/4)x_1   
POL(proper(x1)) = x_1   
POL(nil) = 0   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented:

active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
proper(isNeList(X)) → isNeList(proper(X))
proper(isList(X)) → isList(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(nil) → ok(nil)
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(u) → ok(u)
proper(o) → ok(o)
and(ok(X1), ok(X2)) → ok(and(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
proper(a) → ok(a)
proper(isPal(X)) → isPal(proper(X))
proper(i) → ok(i)
proper(e) → ok(e)
isPal(ok(X)) → ok(isPal(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(isList(V)) → mark(isNeList(V))
active(and(tt, X)) → mark(X)
active(__(nil, X)) → mark(X)
active(__(X, nil)) → mark(X)
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isList(nil)) → mark(tt)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(i) = 0   
POL(a) = 0   
POL(isList(x1)) = 0   
POL(__(x1, x2)) = (2)x_2   
POL(e) = 0   
POL(ok(x1)) = 1/4 + (4)x_1   
POL(mark(x1)) = 0   
POL(isNePal(x1)) = 0   
POL(and(x1, x2)) = (4)x_1 + (4)x_2   
POL(o) = 0   
POL(isQid(x1)) = 0   
POL(active(x1)) = (4)x_1   
POL(isPal(x1)) = 0   
POL(tt) = 0   
POL(u) = 0   
POL(isNeList(x1)) = 0   
POL(TOP(x1)) = (1/2)x_1   
POL(nil) = 0   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented:

active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(isList(V)) → mark(isNeList(V))
active(and(tt, X)) → mark(X)
active(__(nil, X)) → mark(X)
active(__(X, nil)) → mark(X)
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isList(nil)) → mark(tt)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.